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Abstract—Currently visual sensing systems, used in au-
tonomous vehicle’s research, typically perceive the surrounding
environment up to 250m ahead of the vehicle. However, the
detection reliability drops when the object’s position is more
than 50m, due to objects being sparse or unclear for the
detection model to make a confident detection. Cooperative
perception extends the visual horizon of the onboard sensing
system, by expanding the sensing range which improves the
detection precision. This paper explores early distributed visual
data fusion by creating a multi-vehicle dataset using the Carla
simulator to create a shared driving scenario, equipping every
spawned vehicle with LiDAR, GNSS, and IMU sensors to emulate
a real-driving scenario. Furthermore, we investigate the usage
of ZeroMQ-based communication system to distribute visual
and meta- data across relevant neighboring vehicles. Since the
proposed method distributes raw LiDAR data, we utilize point
cloud compression to reduce the size of the published data
between relevant connected vehicles to satisfy communication
bandwidth requirements. Subsequently, we transform and fuse
the received data, and apply a deep learning object detection
model to detect the objects in the scene. Our experiments prove
that our proposed framework improves the detection average
precision while satisfying bandwidth requirements.

Index Terms—point clouds, shared situational awareness, con-
nected vehicles, distributed data fusion

I. INTRODUCTION

Situational awareness of complex driving environments is
crucial for the safety of autonomous navigation. With recent
developments in computer vision using deep learning, the
robustness of single-vehicle perception systems has demon-
strated significant improvements for tasks such as object
detection [1], [2], [3]. Despite these advances, there are still
open challenges; for example, limited field of view due to
single perceptive view leading to failure in detecting objects
that are heavily occluded or further away. This, in turn, can
result in catastrophic consequences affecting the reliability and
safety of autonomous navigation. Additionally, when a sensor
fails due to disconnection or fault in its internal hardware,
the agent will not be able to have a sense of its surrounding;
therefore, a solution to this would be connecting the agents.
Shared situational awareness would provide super-human ca-
pabilities to autonomous navigation if vehicles are equipped
to transmit/receive information from neighboring actors and
fuse/utilize the received information. Recent studies [4]–[6],
presents the benefits of visual data sharing to avoid critical
situations to enhance traffic safety and reduce fatalities, as it
enhances the precision and confidence of the detected objects.

The performance of cooperative driving is dependent on
the type of data being shared, the network bandwidth, and

the data fusion methodology; all of them pose challenges that
need to be tackled. On the one hand, early visual data fusion
algorithms fuse raw data is more favourable [6], since the
data contains more contextual information when compared
with late fusion methodologies that fuses output predictions
of other neighbouring vehicles. In late fusion, the prediction
relies on single vehicular sensors and detectors, this will
only work when both vehicles share a reference object in
their detection; additionally it does not solve the issue of
previously undetected objects which will remain undetected
even after the fusion [6]. On the other hand, the bandwidth and
latency requirements of vehicular networks must satisfy data
transmission for cooperative perception [7] to dynamically
incorporate changes in the driving scene; however, sharing all
collected data and the raw visual data leads to high latency,
due to their size.

To train detection models and evaluate the detection pre-
cision for autonomous vehicles, available datasets such as
KITTI [8] and NuScenes [9] are well-known vision benchmark
datasets. However, as KITTI’s and NuScenes’s data were
gathered from a single vehicle. As a result, those datasets are
only suitable for specific test scenarios such as ego vehicle
object detection, making them unrealistic to be utilized in a
distributed perception framework. Likewise, it is logistically
expensive and time-consuming to deploy multiple cars with
visual sensors to record a large-scale dataset suitable for
benchmarking for cooperative perception algorithms. Taking
into account the aforementioned problems and challenges, in
this work, we aim to:

• Investigate the performance using different quantization
parameters to compress point clouds.

• Share relevant data using ZeroMQ.
• Transform and fuse the raw point clouds, then perform

object detection.
• Create a large-scale multi-vehicle dataset to evaluate the

proposed method.

II. METHODOLOGY

A. Point clouds compression
To satisfy the latency and network’s bandwidth requirements
we utilized Draco compression algorithm [10] to reduce the
size of the point cloud before publishing it. Draco compression
framework is often used as benchmarking algorithm [11], due
to its low computational complexity, resulting in a speedy
compression time. The work presented in [12] shows that the
compressed point cloud using Draco retains reasonable visual



quality when carrying out increasingly lossy compression.
B. Data sharing
The visual and location data retrieved from the vehicle’s
sensors is to be shared to other relevant vehicles for shared
situational awareness; this work utilizes ZeroMQ for data shar-
ing. The data-sharing part is divided into two parts; 1)REQ-
ROUTER and 2)publish-subscribe, as shown in Fig. 1. The
centralized server works with a REQ-ROUTER pattern, where
each vehicle sends its GNSS, IMU data, IP address, publish
port, and topics to the server as a request, then server stores
this data, and creates a unique ID for each vehicle. Afterward,
the service containing the relevancy metrics is initialized to
compute the spatial relevancy of the requesting vehicle to
the others. To achieve this, we created a service to compute
the relevancy of the vehicles to each other. The relevancy
metric is based on the distance between vehicles and the
heading, as presented in Fig. 2. Using the the GPS coordinates
of all vehicles, the relevancy service calculates which other
vehicles lie within a certain radius of the requesting vehicle
and whether the two vehicles share an intersecting heading
as illustrated in Fig. 2. Subsequently, the server replies to the
requesting vehicle with the relevant client ID(s). The second
part utilizes the publish-subscribe pattern, which enables the
vehicles to subscribe to other relevant vehicles (using the
received client ID) to subscribe to their data as soon as it is
available, as shown in Fig .1. After subscribing and receiving
the data from the relevant vehicle(s), the data is then fused
with the ego vehicle’s data.

Fig. 1: Data sharing scheme, consisting of the REQ-ROUTER
and publish subscribe patterns.

C. Fusion and object detection
The point clouds received from other neighbouring vehicles
should be reconstructed and transformed to the ego vehicles
pose, as it was captured from pose in the environment. We
accomplish this by employing point-to-plane ICP (Iterative
Closest Point) registration [13] to find the optimal transforma-
tion matrix between the ego and sender’s point clouds, which
is then used to align the both point clouds. Consequently, the
aligned point clouds are concatenated and fed to a pre-trained
3D object detection model to perform 3D object detection. In
this work, we use PIXOR [2] detector since it is a single-stage,
proposal-free, dense 3D object detector. PIXOR comprises
two networks: 1)Backbone and 2) Header. The backbone is
composed of convolutional layers to extract an over-complete

representation of the input feature and pooling layers, and
pooling layers to down-sample the feature map size to save
computation and help create a more robust representation.

Fig. 2: Relevant metric computation based on the distance and
between the vehicle of interest and other neighboring vehicles.

III. RESULTS & DISCUSSION

To create distributed perception dataset, we utilize Carla
simulator [14]. We employed the multi-agent functionality
of Carla to spawn multiple vehicles, where each vehicle is
equipped with LiDAR to perceive the environment, GPS, and
IMU to retrieve the pose as well as the location of the vehicle.
We propose to use LiDAR sensor as point clouds have spatial
dimensionality over 2D images, and its versatility in the fusion
process as the point cloud data is composed of points rather
than pixels. Additionally, image fusion requires a clear zone
of overlap, which is unnecessary for point cloud, making it
much more robust when fusing data captured from different
locations. The built-in LiDAR sensor in Carla is based on ray
casting, and we defined the LiDARs attributes to match with
the technical specification as Velodyne HDL-64E, generating
250k points/sec, with a horizontal field of view of 360°and
frequency of 10Hz. The GPS and IMU used are built-in objects
in Carla, where we have utilized the default setting attributes
defined by Carla. The ground truth bounding boxes and class
labels of the neighboring actors are retrieved and saved at
every LiDAR sweep.

We fuse the data broadcasted from vehicles within a radius
of 130m based on existing communication protocols [7] and
heading intersection of 70° from the ego-vehicle, and evaluate
detection. In our distributed perception dataset, we include
completely occluded objects, making the task more challeng-
ing and realistic. For object detection, we compute Average
Precision (AP) at Intersection-over-Union (IoU) threshold of
both 0.5 and 0.7. We evaluate the single-vehicle setting without
fusion, early fusion at no quantization, and bit quantization
parameters of 25, 20, 15. The detection visual results in the
five aforementioned setting scenarios are shown in Fig. 3, and



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3: (a) Represents BEV image of the driving scene. (b) Represents the BEV without fusion, (c) represents the BEV without
quantization and (d), (e), (f) are object detection at quantization parameters of 25, 20, 15 respectively.

the numerical assessment is presented in Table. I.
In our experiments, we assumed that the vehicle indicated

by green is the ego vehicle receiving data from other relevant
vehicles. From the visual comparison shown in Fig .3, it is
undeniably clear that with the fusion settings, more objects
were detected that were initially occluded using the ego
LiDAR only. Regarding the fusion, overall, lower quantization
parameter yields in smaller point cloud size to be shared.
Setting the quantization parameter to 20 bits seems to be the
best middle ground for lossy compression, as it still has a
decent output quality while maintaining a compression ratio
of 4.2 times. Quantizing to 15 bits, as shown in Fig. 3f, results
in increasing the compression ratio; however, this reduces the
quality of the point cloud, causing failures in recognizing some
objects. Whereas, without quantization, it results in the best
AP values; however, it shares the largest point cloud size.

TABLE I: Assessment of point cloud size and object detec-
tion’s AP after applying different quantization parameters.

Fusion Quantization
parameter

Data shared
size per vehicle

(Mbps)
Average precision Figure

IOU 0.5 IOU 0.7
× No Quantization 4.2 0.75 0.82 3b
✓ No Quantization 4.2 0.84 0.85 3c
✓ 25 2.1 0.90 0.93 3d
✓ 20 1.4 0.89 0.92 3e
✓ 15 0.7 0.77 0.89 3f

IV. CONCLUSION & FUTURE WORK

In this paper, we have created a shared situational awareness
framework that is composed of: distributed perception dataset,
point cloud compression to reduce the size to satisfy the
networking bandwidth, followed by point cloud transforma-
tion and fusion at the receiving agent. Our proposed shared
situational awareness methodology accomplished prominent
results while satisfying the IEEE 802.11p dedicated short-
range communication (DSRC) requirements [7].

In future, we plan to extend our work to include an in-depth
analysis of the point cloud quality after compression using
PC-MSDM [15], to select the best quantization parameter. We
will compute the transmission delay based on DSRC V2V
communication protocol IEEE 802.11p [7]. Furthermore, we
will perform real-life using a 5G stand-alone network.
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