
Real-Time QoE Estimation for DASH Video
Using Active Network Probing

Gilson Miranda Jr.∗†, Esteban Municio∗, Johann M. Marquez-Barja∗, Daniel Fernandes Macedo†
∗University of Antwerp - imec, IDLab, Faculty of Applied Engineering - Antwerp, Belgium

†Universidade Federal de Minas Gerais - Computer Science Department - Minas Gerais, Brazil
E-mail: {gilson.miranda, esteban.municio, johann.marquez-barja}@uantwerpen.be, damacedo@dcc.ufmg.br

Abstract—Video on Demand (VoD) accounts for a significant
amount of traffic on IP networks. To meet users’ expectations,
network operators need means to monitor and to identify
when service quality is degraded in order to take actions to
avoid customer churn. Most solutions cannot monitor end-to-
end conditions without modification on video player applications
or require deep packet inspection techniques, which may raise
privacy issues. In this demonstration, we use active network
probing to measure end-to-end network Quality of Service (QoS)
conditions and use a Machine Learning model to infer users’
Quality of Experience (QoE) in real-time. The results show that
the method allows us to identify whether the network conditions
allow video sessions with high QoE, or situations in which the
user’s QoE is degraded.

Index Terms—DASH Video, QoE, Machine Learning

I. INTRODUCTION

Video on Demand (VoD) accounts for large amounts of
traffic over the Internet. To keep users satisfied with their
experience, content and network operators must be able to
identify when user experiences are unsatisfactory. With the
widespread consumption of VoD services such as Netflix and
YouTube, industry and academia have been seeking ways to
monitor user-perceived quality for such services [1]. However,
network Quality of Service (QoS) metrics like bandwidth,
delays, or Packet Loss Ratio (PLR) do not map directly into the
user-perceived experience [2]. Instead, the concept of Quality
of Experience (QoE) is used to measure or estimate the user’s
subjective perception of a service.

Many proposals in the literature lack the ability to mon-
itor the last-mile link, which in many cases is the network
bottleneck, especially in wireless networks. Therefore, QoE
monitoring methods that do not cover the last mile may be
unable to detect QoE issues. In previous work, we proposed
a method to monitor QoE for VoD using Internet Control
Message Protocol (ICMP) probing and a Machine Learning
(ML) model that takes network QoS as input and estimates
QoE [3]. In this work, We demonstrate the effectiveness
of the method through real-time monitoring using a setup
comprised by the CityLab1 [4] smart city/wireless testbed, and
Virtual Wall2 cloud testbed. We use an improved version of
the inference model with more relevant QoS statistics, and a
secondary model that improves inference accuracy.

1https://doc.lab.cityofthings.eu/wiki/Main Page
2https://doc.ilabt.imec.be/ilabt/virtualwall/

II. QOE INFERENCE USING ICMP PROBING

Our method uses ICMP probing to perform end-to-end
network QoS measurements. Figure 1 gives an overview of
the method in co-located and distributed deployments. The co-
location considers a context of small-scale Content Delivery
Networks (CDNs) deployed within the domain of an Internet
Service Provider (ISP). The server provides VoD based on
Dynamic Adaptive Streaming over HTTP (DASH). The ISP
has no access to server logs but can deploy a Probing Module
(PM) to monitor the network between server and client. The
ISP can also configure routes so the probing and video flows
follow the same path. In the distributed context the PM is
deployed in a network point between the server and the
client, performing independent probing on both hosts. The
measurements are aggregated to obtain the end-to-end QoS
and perform MOS inferences.

Probing
Module

QoE ModelQoE ModelQoE Model

QoE Models

MOS
PQDistributed PM

CDN-ISP

RTT
Jitter
PLR

QoE ModelQoE ModelQoE Model

QoE Models

DASH
Server

Probing
Module

DASH Client

MOS
PQ

Co-located PM

Fig. 1. Overview of the QoE inference method

The PM continuously measures the Round-Trip Time
(RTT), jitter, and PLR between server and client, running
parallel probing threads. Probing intervals are adjusted ac-
cording to the RTT to obtain 1000 samples in 30 seconds.
RTT, jitter, and PLR statistics are given as input to ML
models based on eXtreme Gradient Boosting (XGBoost) [5].
The models map the input QoS information into an Mean
Opinion Score (MOS) value between 1 and 5, based on ITU-T
P.1203 Recommendation. The dataset used to train the models
was created using the emulated setup in Figure 2. The server



offers a catalog of 15 videos obtained from 4kmedia.org, each
encoded in 10 quality levels. Network impairments between
DASH Server, PM, and DASH Client were inserted using the
Traffic Control (TC) tool for Linux. We executed over 114.000
video sessions and used the software provided by Robitza et
al. and Raake et al. [6], [7]. to label the MOS of the sessions
at each second. The DASH client was based on the DASH
Industry Forum reference player v4.0.0.

DASH
Server

Probing Module

RTT / Jitter / 
PLR

Emulated
Link

DASH Client

DB

Network Emulator

BW Delay PLR

Fig. 2. Emulated setup for dataset creation and model training

The inference method is shown in Figure 3. The models
are based on supervised learning, using a regression tree
ensemble built using XGBoost3. The PM gathers median
RTT, 90th percentile of RTT, median jitter, 90th percentile of
jitter, and PLR from the last 30 seconds. The Primary Model
estimates MOS each second. Per-second MOS estimates are
accumulated by the Postprocess module, which calculates six
statistics: standard deviation of MOS values for the last 10,
20, and 30 seconds; and mean MOS values for the last 10,
20, and 30 seconds. The Secondary Model gets QoS statistics
from the PM, the most recent MOS estimated by the Primary
Model (MOS Pass 1), and the statistics from the Postprocess
module. The output of the Secondary Model is the final MOS
inference. We performed over 115,000 video sessions to build
a dataset for model training and used 20 % of the sessions
to evaluate the model, achieving an Root Mean Square Error
(RMSE) of 1.04. In this demonstration we show the use of the
model on real deployments.

Q
oS

Probing Module

. . .

Primary Model
rtt_median

rtt_90th
jitter_median

jitter_90th
PLR

Postprocess
mos_std_10s
mos_std_20s
mos_std_30s

mos_mean_10s
mos_mean_20s
mos_mean_30s

MOS Pass 1

. . .

Secondary Model

MOS Inference

Fig. 3. Overview of the inference model

III. DEMONSTRATION SCENARIO

For this demonstration, we deploy the video server on
Virtual Wall nodes, and use pairs of CityLab nodes as Wi-Fi

3https://xgboost.ai

APs and clients. The nodes used on Virtual Wall are pcgen2
with 2 Quad-core Intel E5520 2.2GHz CPUs and 12GB of
RAM. On CityLab the nodes are PC Engines apu2c44 with an
AMD GX-412TC 1GHz Quad-core CPU, 4GB of RAM, and
Atheros QCA9880 Wi-Fi cards. The setups to be part of the
demonstration are listed below (Figure 4 shows the position
of the outdoors setups):
• Setup 1: nodes 6 (AP) and 72 (Client). Indoors, with nodes

in close proximity. 40 other APs in range, 6 on the same
channel.

• Setup 2: nodes 71 (AP) and 6 (Client). Indoors, with nodes
in close proximity. 37 APs in range of the AP, 9 on the
same channel. 41 APs in range of the client, 6 on the same
channel.

• Setup 3: nodes 24 (AP) and 28 (Client). Outdoors, with 50
APs in range of the AP, 1 on the same channel. 20 APs in
range of the client, 5 on the same channel.

• Setup 4: nodes 14 (AP) and 18 (Client). Outdoors. 107 APs
in range of the AP, 10 on the same channel. 39 APs in range
of the client, 4 on the same channel.

• Setup 5: nodes 34 (AP) and 35 (Client). Outdoors. 37 APs
in range of the AP, 7 on the same channel. 144 APs in range
of the client, 27 on the same channel.

Node 34
AP

Node 35
Client

Setup 5 

Setup 3 

Node 28
Client

Node 24
AP

Setup 4 

Node 18
Client

Node 14
AP

Fig. 4. Setups 3 to 5 using outdoors nodes of CityLab

The VoD server and the PM are deployed on separate
containers on Virtual Wall. For the demonstration, the PM
performs QoS monitoring, and also runs the inference model
to obtain real-time QoE estimates. The statistics can be viewed
in real-time in a Dashboard using Grafana, including the
QoS values probed by the PM, the QoE estimated, and the
video quality level being played. The client is instrumented
to show the video quality level being consumed during the
session, as well as other application-level statistics. During
the demonstration, the user can visualize such monitoring
information, as well as the QoE level estimated by our method.

IV. DEMONSTRATION OUTPUT

Figures 5, 6, and 7 show examples of the inference outputs
values seen in the Dashboard. Figure 5 shows a session of the
“jimix” video on setup 1. The client constantly receives high
MOS, and we can observe that the inferences are close to the
measurements with slight oscillations.

4https://pcengines.ch/apu2c4.htm



0
Time (s)

50 100 150 200

4

3

2

1

0

M
O

S
5

Setup 01 - Video "jimix" - Run 13

Measured
Inferred

Fig. 5. Sample session on setup 1 and video ”jimix”.

Figure 6 shows a session of the “travel” video on setup 2.
In that case, the inferred values oscillate more, and in fact,
for a period of 25 seconds at the beginning of the session
there was a drop in MOS. This indicates that the network
conditions could be improved in order to guarantee the highest
possible QoE for the whole session. On setup 3 the sessions
had more oscillations, as shown in the example of Figure 7
(a session of the “another” video on setup 3), and also on the
standard deviation of mean inferred MOS values. We observe
that during some periods in Figure 7 the inferred MOS values
present higher errors. Nevertheless, for most of the session
duration, the error is within the expected RMSE, and the
oscillation level of inferences can also be used as an indicator
of sub-optimal user experience.

0 16014012010080604020

4

3

2

1

0

M
O

S

5

Measured
Inferred

Setup 02 - Video "travel" - Run 7

Time (s)

Fig. 6. Sample session on setup 2 and video ”travel”.

For the demonstration, the client is instrumented to send
playback statistics to a controller node, using a control link of
the testbed. The controller also aggregates the latest data and
runs the ITU-T P.1203 models to obtain the “Measured” MOS,
while our inference method provides the “Inferred” MOS.

V. CONCLUSION

In this work, we demonstrate our method of QoE inference
for DASH video using active network probing and ML. The
experimental results using realistic wireless setups show the
feasibility of the method and its limitations. The demonstration
allows real-time visualization of the MOS calculated using
ITU-T P.1203 models, and the inferred values inferred by our
method using network-level statistics.

0 25 50 75 100 125 150 175
Time (s)

4

3

2

1

0

M
O

S

Measured
Inferred

Setup 03 - Video "another" - Run 9

5

Fig. 7. One video session of the ”another” video on setup 3.

ACKNOWLEDGMENT

This work was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, CNPq (funding agency from
the Brazilian federal government), FAPEMIG (Minas Gerais
State Funding Agency), and São Paulo Research Founda-
tion (FAPESP) with Brazilian Internet Steering Committee
(CGI.br), grants 2018/23097-3 and 2020/05182-3.

The work has also been supported by the Horizon
2020 projects Fed4FIRE+ (Grant Agreement No. 723638),
5G-Blueprint (Grant Agreement No. 952189), and by the
FLEXNET project: “Flexible IoT Networks for Value Cre-
ators” (Celtic 2016/3), in the Eureka Celtic-Next Cluster.

REFERENCES

[1] M. Yang, S. Wang, R. N. Calheiros, and F. Yang, “Survey
on QoE assessment approach for network service,” IEEE
Access, vol. 6, pp. 48 374–48 390, 2018. [Online]. Available:
doi.org/10.1109/ACCESS.2018.2867253

[2] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative
relationship between quality of experience and quality of service,”
IEEE Network, vol. 24, no. 2, pp. 36–41, 2010. [Online]. Available:
doi.org/10.1109/MNET.2010.5430142

[3] G. Miranda, D. F. Macedo, and J. M. Marquez-Barja,
“A QoE Inference Method for DASH Video Using ICMP
Probing,” in 2020 16th International Conference on Network and
Service Management (CNSM), 2020, pp. 1–5. [Online]. Available:
doi.org/10.23919/CNSM50824.2020.9269120

[4] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja, “The CityLab
testbed—Large-scale multi-technology wireless experimentation in a
city environment: Neural network-based interference prediction in a
Smart City,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2018, pp.
529–534. [Online]. Available: doi.org/10.1109/INFCOMW.2018.8407018

[5] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2016. [Online]. Available:
doi.org/10.1145/2939672.2939785

[6] A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten,
“A bitstream-based, scalable video-quality model for HTTP adaptive
streaming: ITU-T P.1203.1,” in International Conference on Quality
of Multimedia Experience (QoMEX), May 2017. [Online]. Available:
doi.org/10.1109/QoMEX.2017.7965631

[7] W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä,
J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia,
K. Yamagishi, and S. Broom, “HTTP Adaptive Streaming QoE
Estimation with ITU-T Rec. P.1203 – Open Databases and Software,”
in ACM Multimedia Systems Conference, 2018. [Online]. Available:
doi.org/10.1145/3204949.3208124


