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A B S T R A C T
The rapid advancement of wireless technologies requires efficient spectrum management considering
issues such as interference management and fair coexistence between different technologies. Wireless
technology recognition is one of the approaches used to enable intelligent spectrum management.
This work proposes a technology classification and traffic characterization system that can recognize
and characterize a wide range of wireless technologies that may coexist in the ITS 5.9 GHz band,
namely LTE, Wi-Fi, 5G NR, C-V2X PC5, and ITS-G5 technologies. Compared to current state-of-
the-art technology recognition solutions, a short time resolution window is selected based on the
shortest possible frame duration of the considered technologies. We carried out a "complexity and
accuracy trade-off" analysis for six distinct technology recognition models trained and validated at
different sampling rates, including 1, 5, 10, 15, 20, and 25 Msps. In addition, the performance of
the technology recognition models was evaluated under different channel conditions. For average
to high SNR, a less complex CNN model with lower sampling rates (e.g., 5 Msps) can effectively
distinguish the signal with 96% classification accuracy. On the other hand, high classification accuracy
is obtained using complex, high sampling rate-based CNN models (e.g., 20 Msps) for low (less than
0 dB) SNR channels. A traffic characterization process is also proposed, where the output of the
technology recognition is used to identify the traffic characteristics of the technologies in terms of
channel occupancy time, transmission pattern, and frame count. The obtained results show that the
proposed solution can be used to effectively characterize the identified traffic.

1. Introduction
The expansion of wireless network deployments, along

with the rapid penetration of consumer devices such as
smartphones and tablets, has resulted in an exponential
increase in wireless traffic demand and spectrum usage [1].
Furthermore, the Internet of Things consumes a significant
portion of the wireless spectrum, connecting an unprece-
dented number of intelligent devices to next-generation mo-
bile networks. With the constantly expanding traffic demand,
it is also predicted that there will be about 120 billion
subscriptions by 2030 [2] and thus will create a significant
impact on the spectrum usage.

As a solution to meet the rising traffic demand, spec-
trum sharing is proposed to be used in current and next-
generation communication systems. Spectrum sharing is
broadly used between Wi-Fi, private LTE, 5G New Radio
Unlicensed (NR-U), Unlicensed LTE (LTE-U) or License
Assisted Access (LAA), MulteFire, and others [3]. The ISM
(2.4 GHz and 5 GHz) bands, the 3.5 GHz CBRS band,
the mmWave bands at 60 GHz, and others are among the
unlicensed or license-assisted bands where the aforemen-
tioned technologies share spectrum. Similarly, the European
Commission in Europe and the Federal Communications
Commission (FCC) in the United States have both begun
formal investigations to determine whether unlicensed op-
erations in the 6 GHz band are feasible. The FCC issued
a Notice of Proposed Rule Making seeking comments and
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input on opening up the 5.925-7.125 GHz spectrum in the
United States to unlicensed access [4]. According to the
FCC of the US, this band has four sub-bands: U-NII-5
(5.925–6.425 GHz), U-NII-6 (6.425–6.525 GHz), U-NII-
7 (6.525–6.875 GHz), and U-NII-8 (6.875–7.125 GHz).
The FCC has established spectrum sharing rules for these
sub-bands. Similarly, the European Commission initiated a
feasibility study of unlicensed operations in the 5.945-6.425
GHz band in Europe [5]. This 6 GHz unlicensed spectrum
will unlock an additional 480 MHz of spectrum in Europe
and 1.2 GHz of spectrum in the US, which significantly
increases the amount of unlicensed spectrum available in
these regions.

Most existing spectrum sharing solutions are proposed to
utilize the unlicensed spectrum efficiently. In comparison to
today’s static and conservative approaches, spectrum man-
agement and usage is expected to become more flexible and
dynamic in the future [6, 7, 8]. As a result, a Radio Access
Technology (RAT) may be able to operate in any frequency
range supported by its Radio Frequency (RF) front-end, as
far as it deploys efficient coexistence mechanisms with other
co-located concurrent transmissions [9]. In this direction,
some researchers have proposed spectrum sharing solutions
between V2X technologies and Wi-Fi [10], LTE [11], and,
5G NR networks [12]. In the near future, the 5.9 GHz ITS
bands could be potentially used by other RATs such as LTE,
Wi-Fi, and 5G NR as long as the deployment is implemented
in such a way that the RATs can harmonically coexist with
the incumbent transmissions.
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The IEEE 802.11p standard is an improved version of
the IEEE 802.11a standard that is designed for vehicu-
lar networking. IEEE 802.11p-based vehicular communica-
tions are known as Dedicated Short Range Communications
(DSRC) in the United States [13] and Intelligent Transport
Systems - G5 (ITS-G5) in Europe [14]. The "G5" in the
ITS-G5 acronym comes from the frequency band (5.9GHz).
The technical concepts of ITS-G5 in Europe and DSRC
in the United States are very similar, although Vehicular
Communications (V2X) in other regions, such as Japan’s
ITS communication system operating at 700 MHz, are quite
different.

As an alternative to the ITS-G5/DSRC based vehicu-
lar communication solutions, the Third Generation Partner-
ship Project (3GPP) published the first version of Cellular
V2X (C-V2X) communications standard, as part of Release
14 [15]. In this release, Mode 3 and Mode 4 (C-V2X PC5)
communication modes have been introduced, particularly for
Vehicle-to-Vehicle (V2V) communications. In the case of
Mode 3, the cellular network allocates and manages the radio
resources that vehicles use for direct V2V communication.
Mode 4 supports distributed congestion control and offers
a distributed scheduling method for vehicles to allocate
their radio resources. Mode 3 based V2V communications
depend on the cellular coverage provided by the 4G/5G radio
network. Mode 4, on the other hand, can work independently
out of cellular coverage and is hence considered as the
baseline cellular-based V2V mode, as safety applications
cannot always rely on cellular coverage.

Figure 1 shows the 5.9 GHz bands designated for ITS
application in Europe [16]. The bands in the frequency
range of 5855-5875 MHz are used for non-safety road-
ITS applications, whereas the bands in the 5875-5935 MHz
range are for safety-related ITS applications. In addition,
the frequency ranges 5875-5915 MHz and 5915-5925 MHz
are prioritized for road-ITS and rail-ITS applications, re-
spectively, with the frequency range 5925-5935 MHz re-
served for rail-ITS solely. Similarly, the FCC of the US
allocated 75 MHz of spectrum in the 5.9 GHz band, of
which the 45 MHz of spectrum is unlicensed while the
remaining 30 MHz of spectrum is exclusively used for DSRC
and other transportation-related purposes [17]. The V2X
services available in the 5.9 GHz ITS band include V2V,
vehicle-to-Infrastructure (V2I), Vehicle-to-Network (V2N),
Vehicle-to-Pedestrian (V2P), and Vehicle-to-Roadside unit
(V2R). The use of On-Board Units (OBUs) and Road-Side
Units (RSUs) in these ITS bands is permitted under the terms
of a license exemption.

Figure 1: Spectrum bands for ITS applications at 5.9 GHz in
Europe.

In the future, spectrum management is expected to be-
come more flexible and dynamic, allowing potentially all
radio access technologies to share a wide range of the spec-
trum, as long as this is supported by the frontend and allowed
by the regulators. In this direction, smart spectrum decisions
will be required, which can be aided by wireless technology
recognition, allowing networks to dynamically adapt to an
ever-changing environment in which fair coexistence with
other wireless technologies is becoming increasingly impor-
tant.

In this paper, we present a Deep Learning-based Tech-
nology Recognition and Traffic Characterization (DL-TRTC)
solution that can be used to enable spectrum sharing in
the 5.9 GHz ITS band. To realize this, we consider LTE,
5G NR, and Wi-Fi RATs co-located with the existing
incumbent C-V2X PC5 and ITS-G5 technologies in the same
5.9 GHz ITS band. The proposed DL-TRTC comprises of
two major blocks: a) technology recognition and b) traffic
characterization. The technology recognition identifies the
operating technology and the traffic characterization extracts
characteristics of each identified technology. The main
contributions of this work are summarized as follows:

• We propose a Convolutional Neural Network (CNN)
based technology recognition model to identify dif-
ferent technologies operating in the 5.9GHz ITS band.
We consider multiple RATs (LTE, 5G NR, Wi-Fi) that
can coexist in the 5.9 GHz ITS band along with the
incumbent C-V2X PC5 and ITS-G5 technologies.

• For the training and validation of the CNN model, we
use a dataset collected from a Software Defined Radio
(SDR) based testbed and Commercial off-the-shelf
(COTS) hardware. In-phase and quadrature (IQ) sam-
ples are collected and the corresponding Fast Fourier
Transform (FFT) frequency-domain representation is
used to train and validate the developed CNN model.

• In contrast to the existing literature, a short Time Res-
olution Window (TRW) of only 44 𝜇s is used for the
technology recognition model. The time resolution is
selected based on the shortest possible frame duration
of the considered technologies.

• We analyze the performance of the technology recog-
nition models in terms of accuracy, robustness against
noise, and complexity. The complexity/accuracy anal-
ysis is obtained considering six different technology
recognition models which are trained and validated
using various dataset clusters collected at sampling
rates of 1, 5, 10, 15, 20, and 25 Msps. The performance
of the technology recognition models is evaluated
for various SNR values representing different channel
conditions.

• We also propose a traffic characterization scheme to
determine the traffic behaviour of the technologies
identified by the technology recognition model. The
traffic characterization performance of the proposed
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scheme is measured by Channel Occupancy Time
(COT) estimation accuracy, transmission pattern char-
acterization accuracy, and estimated frame count ac-
curacy.

• Classification performance comparison is done be-
tween the proposed and existing technology recog-
nition schemes. Similarly, performance comparison
is done in terms of traffic characterization of the
DL-TRTC using the proposed 44 𝜇s TRW and other
different TRWs adopted from related works.

• For reproducibility and bench-marking purposes, we
pledge to make the training and validation dataset used
in this study available as open-source1.

The rest of this paper is structured as follows. Section
2 examines some recent studies on the coexistence of dif-
ferent RATs and incumbent transmissions at the 5.9 GHz
ITS band. Section 3 presents the description of the system
considered and the formulation of the problem addressed.
The procedures of the proposed technology recognition and
traffic characterization solutions are described in Section 4.
Section 5 presents the performance evaluation of the pro-
posed solution. Finally, Section 6 discusses the conclusion
of this work and potential future works.

Table 1 summarizes the abbreviations used in this article.

2. Related Work
2.1. Spectrum Sensing in ITS Band

The concept of efficient spectrum sensing that can be
used to enhance the spectrum efficiency of 5G NR-U, LTE
LAA, Wi-Fi, MulteFire, and others in the unlicensed ISM
band (2.4GHz/5GHz) is a hot research topic [3]. Simi-
larly, spectrum sharing issues were raised for the ITS band
after the FCC issued a regulation to split the 5.9 GHz
band between unlicensed use (initially indoor and poten-
tially outdoor) and its previously specified use for intelligent
transportation systems [4]. As a result of this decision by
FCC, concerns have been raised about the need for efficient
spectrum sensing to avoid potential interference between
unlicensed technologies (e.g., Wi-Fi, LTE-U, 5G NR-U) and
ITS technologies (C-V2X PC5 and ITS-G5).

Energy detection based spectrum sensing is used in
most existing coexistence schemes in ITS band [10, 18, 19,
20]. Devices using energy detection-based spectrum sensing
measure local energy to determine channel availability. The
channel is labeled as "busy" if the measured energy exceeds a
predefined energy detection threshold. Otherwise, the chan-
nel is considered as idle, and the devices will be able to com-
pete for it. Authors in [10] propose two coexistence schemes
that can be used to enhance the coexistence of Wi-Fi and
ITS-G5. The first scheme is called "detect and vacate", where
the Wi-Fi device senses ITS-G5 transmissions and evacuates
the channel. The second proposed scheme is called "detect

1https://gitlab.ilabt.imec.be/mgirmay/tech-rec-its-band

Table 1
List of abbreviations used.

Acronym Description

BSM Basic Safety Message
C-V2X Cellular V2X
COT Channel Occupancy Time
COTS Commercial Off-the-Shelf
CNN Convolutional Neural Network
CA Cooperative Awareness
DEN Decentralized Environmental Notification
DSRC Dedicated Short Range Communications
eNB eNodeB
EPC Evolved Packet Core
FFT Fast Fourier Transform
FCC Federal Communications Commission
FPGA Field Programmable Gate Array
IVI Infrastructure to Vehicle Information
IQ In-phase and quadrature
ITS-G5 Intelligent Transport Systems - G5
IOT Internet of Things
LAA License Assisted Access
MAP Mobile Access Points
MCS Modulation and Coding Scheme
NR-U New Radio Unlicensed
OBU On-Board Unit
pps packets per second
RAT Radio Access Technology
RF Radio Frequency
RFC Random Forest Classifier
RSSI Received Signal Strength Identifier
RSU Road-Side Unit
SPS Semi-Persistent Scheduling
SDR Software Defined Radio
SVM Support Vector Machines
TRTC Technology Recognition & Traffic Characterization
TRW Time Resolution Window
LTE-U Unlicensed LTE
UE User Equipment
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2P Vehicle-to-Pedestrian
V2R Vehicle-to-Roadside unit
V2V Vehicle-to-Vehicle
V2X Vehicle-to-everything

and mitigate", where the Wi-Fi device adjusts its contention
window by sensing ITS-G5 transmissions. Similarly, possi-
ble issues of coexistence between Wi-Fi and the standard
vehicular communication transmissions on the ITS band are
discussed in [18]. In this article, the authors propose that
Wi-Fi devices should use higher receiver sensitivity to sense
possible safety-critical vehicular communication. They also
propose that the Wi-Fi devices operating at 5.9 GHz should
use increased interframe spacing to give more transmission
time to the native ITS band vehicular communication. The
authors of [19] investigate co-channel interference between
C-V2X PC5 and ITS-G5 in the 5.9 GHz band, where the
two technologies share a 10 MHz radio channel. This article
proposes new mechanisms that can be used to minimize
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Table 2
Related work: technology recognition models.

Model Considered Input Approach Time Traffic
RATs resolution characterization

[22] Wi-Fi, DVB-T, LTE RSSI, IQ, FFT CNN, RFC 4.096 ms ✗

[23] LTE, Wi-Fi, 5G NR IQ CNN, RNN 600 ms ✗

[24] UMTS, LTE, 5G NR RSSI graph CNN Not mentioned ✗

[25] LTE, Wi-Fi IQ CNN 68 𝜇𝑠 ✗

[26] LTE, Wi-Fi IQ, FFT CNN 100 𝜇𝑠 COT

[27] LTE, Wi-Fi Spectrogram DNN Not mentioned ✗

[28] Sigfox, 802.11ah IQ,FFT CNN 244 𝜇𝑠 ✗

LoRA, 802.15.4g

[29] GSM, WCDMA, LTE IQ SVM 819.2 𝜇𝑠 ✗

[30] ITS-G5, LTE-V2X TF features RFC 819.2 𝜇𝑠 ✗

5G-V2X

Proposed LTE, Wi-Fi, 5G NR, FFT CNN 44 𝜇𝑠 COT, Frame count,
C-V2X PC5, ITS-G5 Transmission pattern

the performance losses and evaluate co-channel interference
between the two technologies. Similarly, the authors of [20]
propose a detect and defer-based coexistence scheme for
unlicensed devices co-located with ITS-G5 transmissions.
The problem with energy detection is that it cannot identify
operating technology, which is an important enabler for
efficient spectrum decision making.

In general, several researchers have proposed different
coexistence schemes that can be used for the coexistence
of different RATs and the incumbent vehicular communi-
cations in the ITS band. The coexistence schemes in the
literature use energy detection-based spectrum sensing to
determine the medium status. However, spectrum sharing
schemes in the ITS band should aim to protect safety-critical
vehicular communications. For this reason, the identification
of co-located transmissions is crucial to protect and priori-
tize the incumbent transmissions in the ITS band. The use
of technology recognition is a more realistic approach to
identify the concurrent transmissions as it a) replaces the
need for a complex universal receiver and the architectural
modification of the standard nodes required for signaling
exchange, b) is a scalable solution and can easily be extended
to the identification of any number of technologies, and c)
does not require manual feature extraction and automatically
extracts important features from the raw data. The reader can
refer to [21] for a recent survey on technology recognition-
based solutions.

2.2. Technology Recognition for Spectrum Sensing
The technology recognition-based spectrum sensing ap-

proach enables each active user to identify the concurrent
transmissions by other technologies. This enables better co-
existence between different wireless technologies operating
in the same band. Hence, many researchers have proposed
different technology recognition models, considering differ-
ent possible combinations of RATs. Table 2 shows a sum-
mary of existing technology recognition-based spectrum
sensing models in the literature [22, 23, 24, 25, 26, 27, 28,
29, 30].

The authors in [22] compare manual feature extraction
and automatic feature learning algorithms for LTE, Wi-Fi,
and DVB-T technologies using multiple datasets to study the
complexity/accuracy trade-offs. The authors also compare
the performance of classification based on Received Signal
Strength Identifier (RSSI), IQ samples, and FFT of the IQ
samples used as an input. The TRW used in this study is
4.096 ms. Similarly, the authors of [23] propose a model
for identifying Wi-Fi, LTE LAA, and 5G NR-U signals in
the unlicensed 5-6 GHz band. An optimal TRW of 600 ms
is used to apply Short-time Fourier Transform to the IQ
sequences to enhance the classification accuracy. In [24],
deep learning neural network-based technology recognition
model is proposed to classify cellular system signals, includ-
ing UMTS, LTE, and 5G NR. The technology recognition
model uses the RSSI graph picture as an input to classify the
signals. However, the TRW used to plot each picture is not
mentioned in the paper.
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In [25, 26, 27], technology recognition models are also
proposed to classify LTE and Wi-Fi signals. In [25], 1024
IQ samples collected at 15 Msps are used as an input to the
model, which indicates a time resolution of 68 𝜇s. In [26],
IQ samples and FFT of IQ samples are used as an input to the
technology recognition model. A resolution window of 100
𝜇s with a 20 Msps sampling rate is used to generate each sig-
nal label input. The technology recognition model proposed
in [27] uses spectrogram pictures of received signals as an
input to classify the signals. There is, however, no mention
of the TRW used in technology recognition model.

A multi-band sub-GHz technology recognition that can
classify Sigfox, 802.11ah, LoRA, and 802.15.4g technolo-
gies is proposed in [28]. IQ samples and FFT of IQ samples
are used to train the technology recognition model in this
work. A time resolution of 244 𝜇s is used to generate 500 IQ
samples in each signal label segment.

Authors in [29] propose a Support Vector Machines
(SVM) based technology recognition model that can iden-
tify GSM, WCDMA, and LTE signals. 16384 IQ samples
generated at a 20 Msps sampling rate are used as an input
to the model This leads to a time resolution of 819.2 𝜇s for
each labeled signal portion. The authors of [30] propose a
technology recognition model based on a Random Forest
Classifier (RFC) to identify ITS-G5, LTE-V2X, and 5G-V2X
signals. The authors use the same number of IQ (16384)
input sizes as [29], resulting in a TRW of 819.2 𝜇s. The
authors also use a simulator to generate the signal for each
vehicular communication technology.
2.3. Enhancements

In the previous section, we observed that many tech-
nology recognition models have been proposed that can be
used to sense the technologies available in the spectrum.
The ultimate goal of technology recognition is to explicitly
identify the spectrum utilized by each technology and predict
traffic patterns. However, the technology recognition models
in the literature use a longer TRW duration as compared to
the minimum possible frame duration in the technologies
they take in to account. In this case, the probability of
considering multiple frames from different technologies as
one label increases. Consequently, this longer TRW results
in poor traffic characterization that may lead to inefficient
spectrum sharing by the coexistence schemes. Such ineffi-
cient spectrum sharing with higher a probability of packet
collisions makes deploying longer TRW less practical for
safety-critical vehicular communications. As a solution to
this, we propose a technology recognition model that uses
a short TRW, selected based on the smallest possible frame
duration of the considered technologies.

Additionally, the existing technology recognition solu-
tions consider a fixed sampling rate to capture the input.
However, the selection of sampling rate requires fine-tuning
as it affects the number of input samples used for the model,
which in turn affects the accuracy and complexity of the
model. In this work, accuracy/complexity trade-off analysis
is done by varying the sampling rate from 1 to 25 Msps.

Moreover, most of the technology recognition models
in the literature perform performance analysis based on
the identification of signals measured in each TRW. How-
ever, identification of a signal transmitted in a single TRW
cannot be useful to estimate meaningful information about
the spectrum utilization of each technology. Relevant traffic
predictions can be made after collecting sufficient statistics
of identified technology, which can be obtained based on a
signal segment measured in a certain traffic characterization
time period. Therefore, the performance analysis in terms of
complexity and accuracy has to be validated considering a
practical characterization time window for each technology.
In this work, we propose a traffic characterization process
where the identified statistics of each co-located network are
used to identify the traffic characteristics (frame count, COT,
transmission pattern) of each technology.

To the best of our knowledge, existing wireless technol-
ogy identification solutions have not considered the context
of sharing ITS-G5 and C-V2X PC5 vehicular communi-
cation technologies and other RATs such as Wi-Fi, LTE
and 5G NR operating in the ITS band. In this paper, we
propose a DL-TRTC solution that can be used to identify
and characterize LTE, 5G NR, Wi-Fi, C-V2X PC5, and ITS-
G5 traffic in the 5.9 GHz ITS band. Unlike many technol-
ogy recognition models in the literature, we use a dataset
collected at different sampling rates using an SDR-based
experimental setup and COTS devices and show their impact
in terms of model accuracy and complexity.

3. Problem Definition
With the exponential growth of wireless network users,

the process of making new spectrum available has become
a challenge. Similarly, the concept of sharing the spectrum
between different radio services continues to be a difficult
task. Interference management and fair coexistence between
different RATs require innovative ways to define efficient
technical solutions that are feasible for practical deployment.
Generally, efficient spectrum utilization in the dynamic en-
vironment of wireless networks necessitates a fast, robust,
and adaptive spectrum sensing scheme that requires identi-
fication of different technologies sharing the medium.

In this work, we consider that 5G NR, LTE, and Wi-
Fi RATs can be deployed in the ITS band along with the
incumbent technologies (C-V2X PC5 and ITS-G5). Figure 2
shows a practical scenario where the aforementioned tech-
nologies can interfere with each other. The figure shows that
C-V2X PC5 and ITS-G5 user vehicles moving on the road
can get interference from each other and from nearby 5G
NR, LTE, and Wi-Fi users. As a result, the C-V2X PC5 and
ITS-G5 user vehicles may lose critical safety warnings that
are important to minimize/avoid accidents. This scenario is
more likely to happen in the near future in metropolitan
areas, where a large number of RATs operate in the same
ITS band.

Furthermore, 5G NR, LTE, and Wi-Fi RATs can be
deployed on vehicle-based Mobile Access Points (MAPs)
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Figure 2: Interference scenarios in future networks in ITS band

[31]. In such a network, multiple MAPs with multi-RAT
capabilities may be dynamically deployed in close proximity
to each other, leading to higher interference. Generally, ef-
ficient spectrum sensing mechanisms must be implemented
to ensure fairness and optimal sharing of spectral resources
among the co-located RATs, while ensuring the protection
of potential incumbents in the 5.9 GHz band.

In such heterogeneous networks, each actively transmit-
ting node has to sense the spectrum and adapt its spec-
trum utilization in such a way that it minimizes collisions
with other active nodes. In many coexistence solutions, the
common mechanism used to sense the environment and
detect a co-located active node is based on the energy
detection threshold. However, multiple RATs and incumbent
technologies are expected to share the same ITS band, and
this makes the energy detection-based sensing inefficient to
identify and protect/prioritize the incumbent transmission.
In such scenarios, the identification of co-located active
RATs and incumbent ITS transmissions is essential in mak-
ing smart spectrum decisions. In an environment with the
concurrent transmission of different technologies, a node can
determine the traffic characteristics of the co-located active
nodes by i) using a complex universal receiver that can de-
code all the possible co-located technologies, ii) introducing
a signaling channel that is used to communicate between
the technologies, and iii) deploying a technology recognition
model. Using a universal receiver requires a complex system
that decodes all possible signal types in each node, and
this increases the implementation cost and the complexity,
making it an unfeasible option. Similarly, introducing a co-
ordination signaling channel to enable status communication
between all the nodes requires architectural modifications in
all the existing standards, which increases the overall system
complexity. Technology recognition can be used to minimize
this implementation complexity as it enables an active node
to sense the wireless environment and identify the traffic
statistics of other co-located networks [32]. The extracted
information can be used to formulate coexistence decisions
[33] without signaling exchange and without the need for a
complex receiver.

Technology recognition is used for the identification of
co-located wireless technologies. The identified statistics of

Table 3
Minimum possible continuous channel occupancy duration for
each technology.

Technology Minimum signal duration

802.11n 44 𝜇s (for the ACK frame)
LTE 0.5 ms (slot duration)
5G NR 70 𝜇s (mini slot duration)
C-V2X PC5 643 𝜇s (for a 193B BSM packet)
ITS-G5 120𝜇𝑠 (for a 193B BSM packet)

each identified technology is used to characterize the traffic
of each technology. The characterization process is used to
estimate and predict the traffic characteristics of each tech-
nology, which can be used as an input to develop a spectrum
sharing scheme [12]. In this direction, we propose a deep
learning-based technology recognition and characterization
solution, which we call DL-TRTC. The proposed DL-TRTC
is used for identification and characterization of C-V2X PC5,
ITS-G5, LTE, 5G NR, and Wi-Fi technologies.

The TRW of a technology recognition model is an impor-
tant parameter in terms of traffic characterization accuracy
and practicability. Using a TRW longer than the minimum
possible frame duration of the considered technologies re-
sults in an increased probability of getting a label composed
of portions of multiple frames from different technologies.
This leads to poor traffic characterization accuracy, which
in turn leads to a larger risk of packet collisions, which are
uncompromised in safety-critical applications of vehicular
communications. Hence, we need a technology recognition
solution with a short TRW so that it can distinguish the
shortest possible frame among the considered technologies,
which is 44 𝜇s in our case (Table 3).

Table 3 shows the minimum possible transmission dura-
tion of each considered technology. In the case of LTE and
5G NR networks, the resources are mapped on a resource
block basis. LTE uses a 15 kHz sub-carrier spacing, which
leads to a slot duration of 0.5 ms [34]. Unlike LTE, 5G NR
supports multiple types of sub-carrier spacing and mini-slots
used for ultra-reliable low latency communications [35].
The shortest possible mini-slot has a duration of 70 𝜇s.

The outcome of a technology recognition model shows
which technology is used for each TRW. A meaningful traffic
characteristics of the technologies can be determined consid-
ering a sufficient number of TRWs. Hence, the traffic char-
acteristics of the identified technologies have to be collected
and processed based on a reasonable traffic characterization
time period.

In the case of an IEEE802.11n Wi-Fi network, the short-
est possible frame is the ACK frame, which has a frame
duration of 44 𝜇s [36]. The shortest possible packet for a
Basic Safety Message (BSM) with a packet size of 193B
[36] leads to a shortest possible frame duration of 120 𝜇s in
the ITS-G5 network when the highest possible Modulation
and Coding Scheme (MCS) index 7 is used. In the case of
C-V2X PC5 a 193B BSM packet requires 643 𝜇s for MCS
20 [37].
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Figure 3: Architecture of proposed technology identification and characterization process.

4. Proposed Technology Recognition and
Characterization Solution
In this section, the dataset collection, training, and

validation process of the proposed technology recognition
model are described. The main procedures of the technology
recognition and characterization process are also described
in this section. Figure 3 shows the execution process of
technology recognition and characterization based on a
trained and validated technology recognition model. The
figure shows that transmissions from C-V2X PC5, ITS-
G5, Wi-Fi, LTE, and 5G NR transmitters are received
and pre-processed before the technology classification and
characterization process.
4.1. Data Collection

In the data collection phase, samples of each signal
type are received and collected at different sampling rates.
In principle, a bandlimited continuous-time signal can be
sampled and perfectly reconstructed from its samples if the
waveform is sampled at least twice its highest frequency
component. However, even if the signals are downsampled
to a low sampling frequency, unique features of each technol-
ogy can be detected using a technology recognition model.
For this reason, different sampling rates ranging from low to
high are used in the existing technology recognition models.
As an example, a low 1 MHz sampling rate is used in
[22], while a higher sampling rate of 20 MHz is used in
[26]. However, these sampling rates are used without proper
complexity and accuracy analysis. Hence, we perform com-
plexity and accuracy analysis at a range of sampling rates,
including 1, 5, 10, 15, 20, and 25 MHz.

The dataset for each technology is prepared in a con-
trolled environment where only one technology transmits at
a time. Once the technology recognition model is trained
and validated using the dataset representing each considered
technology, the model can identify and characterize the
traffic from each technology when multiple technologies
share the spectrum. We propose a short TRW based on the

shortest possible frame size among the considered technolo-
gies. This enables efficient traffic identification and charac-
terization when multiple technologies share the spectrum, as
the chance of overlapping within a TRW will be low.

A synthetic dataset of each technology can be gener-
ated using simulators [30]. However, simulators make many
assumptions, and the performance of a model trained with
synthetic data deviates when it is evaluated in real-world ap-
plications. For this reason, we used hardware and software-
based setups that are used in the real-world application
of each technology. Unlike simulator-based data collection,
in this data collection approach, setting up an end-to-end
network of each technology and varying all possible channel
conditions, network configuration, and traffic parameters of
each technology is challenging. However, we used different
software-based solutions to configure various MCS, traffic
load, traffic type, and transmission patterns for each technol-
ogy. In the following subsections, we describe the hardware
and software used to collect data for each technology. For the
Wi-Fi, LTE, and 5G NR network setups, a host PC connected
to a USRP X310 is used to capture and store the captured IQ
samples. Similarly, a host PC connected to a USRP N310 is
used to capture IQ samples from ITS-G5 and C-V2X PC5
networks.
4.1.1. Wi-Fi

For the Wi-Fi dataset collection, the openWi-Fi [38]
SDR solution is used. openWi-Fi is an open-source full-stack
IEEE 802.11 a/g/n SDR implementation based on the Xilinx
Zynq System on Chip that includes a Field Programmable
Gate Array (FPGA) and an ARM processor. Figure 4 shows
the equipment and set up used for the Wi-Fi dataset collec-
tion. For our dataset, we used an IEEE802.11n access point
and a client connected to it. Wi-Fi traffic generated covers a
wide range of traffic loads, i.e., 10–200 packets per second
(pps), with packet sizes ranging from 500 to 1500 bytes. The
MCS used was varied by manually configuring the MCS
index value between 0 and 7.
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Figure 4: Setup used for Wi-Fi dataset collection.

4.1.2. LTE and 5G NR
For LTE dataset collection, srsRAN [39], an open-source

SDR platform, is used. srsRAN offers a 4G LTE SDR
solution that supports LTE User Equipment (UE), eNodeB
(eNB), and Evolved Packet Core (EPC) implementations.
This LTE SDR implementation is used to collect samples
for the LTE dataset. An end-to-end srsRAN LTE SDR setup
requires a minimum of two Linux host PCs, one for the UE
and one for the eNB and EPC. Each host PC is connected to a
single RF-frontend. The indoor testbed setup used to collect
our dataset consists of one eNB host PC and one UE host PC.
Each host PC is connected to a USRP X310 board, which is
used as the RF front end. We use the latest srsRAN version
21.04, which is installed on each host PC. Blank subframes
were introduced in some of the LTE frames to represent
a varying spectrum utilization. The blank subframes are
introduced by modifying the srsRAN source code based on
our previous work in [40]. For the LTE dataset collection,
the FDD mode with a 10 MHz bandwidth and a 5.9 GHz
center frequency is used for the downlink traffic.

Similarly, the OpenAirInterface [41] SDR solution is
used for 5G NR dataset collection. OpenAirInterface is an
open source SDR platform that provides a 3GPP compliant
implementation of eNB, UE, and EPC. The OpenAirInter-
face SDR solution also includes a 5G non-stand alone (NSA)
mode which supports 5G networks by using existing 4G
infrastructure. This SDR-based 5G network setup is used to
collect the IQ samples for the 5G NR dataset. For the 5G NR
dataset collection, a 1:1 static TDD configuration is used for
up-link and down-link traffic in NSA mode. Numerology 1
is used at 10 MHz bandwidth and center frequency of 5.9
GHz.

For both the LTE and 5G NR datasets, the MCS used
was varied by manually configuring different values ranging
from MCS index 1 to 28, and the traffic load was varied
between 5 and 50 Mbps. Figure 5 shows the setup used
to collect LTE and 5G NR dataset. The figure shows two
potable units in IDLab 5G testbed used for an end-to-end
test, one used as eNB/gNB and the second used as 4G/5G
UE. Each portable unit consists of a powerful computing unit
which is used to test the srsRAN and OAI based open-source
LTE/5G solutions. An SDR USRP X310 connected to the
computing unit is used as an RF front end.
4.1.3. ITS-G5 and C-V2X PC5

The CAMINO framework [42] was used for the ITS-
G5 and C-V2X PC5 dataset collection. CAMINO is a core

Figure 5: Setup used for LTE and 5G NR dataset collection.

framework for managing the V2X communication tech-
nologies, including ITS-G5, C-V2X PC5 and C-V2X Uu
(5G/4G). The CAMINO framework is used to dynamically
generate standardized C-ITS service packets, including Co-
operative Awareness (CA), Decentralized Environmental
Notification (DEN), and Infrastructure to Vehicle Informa-
tion (IVI) message packets.

The CAMINO software is implemented on the infras-
tructure deployed as part of the Belgian Smart Highway
testbed [43]. The Smart Highway is a testbed deployed by
IMEC on the E313 highway, near Antwerp, Flanders. The
Smart Highway testbed consists of eight RSUs and two
OBUs. Each RSU and OBU includes a general purpose CPU
running the CAMINO software, and Cohda MK5 and MK6c
modules, which are COTS ITS-G5 and C-V2X modules
respectively. In our dataset collection, RSU4 is used as a
transmitter, and a USRP N310 connected to RSU3 is used to
capture and store the samples. Figure 6 shows the location
of RSU3 and RSU4 on the Smart Highway testbed and the
hardware components of each RSU [43]. To represent a wide
range of traffic characteristics, different packet sizes of 300B
for CA, 300B and 600B for DEN, and 600B for IVI packets
were used at inter-packet intervals of 20, 50, 100, and 200
seconds. The MCS used in both technologies was varied by
manually changing the MCS index value in the configuration
files of the Cohda devices. The MCS index of ITS-G5 varied
from 0 to 7. Similarly, the MCS index of C-V2X PC5 varied
from 0 to 20.
4.1.4. Noise

The noise floor of the noise signal is dependent on the
state and type of the hardware used to sense the spectrum.
This makes using a threshold based noise detection inaccu-
rate. Hence, we consider noise signal as an additional class
in the technology recognition model along with the con-
sidered technologies. Likewise, for the other technologies,
IQ samples of the noise signal were also captured for each
considered sampling rate. The noise signal was captured in
a clear channel where no other active transmissions were
active. For generalization purposes, the noise signal was
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(a) RSU Components (b) RSU location map
Figure 6: a) RSU components b) The locations of the transmitter (RSU4) and receiver (RSU3) road side units used for ITS-G5
and C-V2X PC5 dataset collection (on the E313 smart highway, near Antwerp, Belgium).

captured using USRP X310 in an indoor environment and
using USRP N310 in an outdoor environment at the Smart
Highway testbed.
4.2. Pre-processing Phase

In this subsection, the procedure followed during the
Pre-processing phase is described. To evaluate the per-
formance of the technology recognition model on differ-
ent channel conditions, the collected IQ samples are pre-
processed by adding White Gaussian Noise for various SNR
levels in dB. The SNR levels include {-10, -5, · · · , 25, 30}
dB. If the received signal sample is 𝑅[𝑛], then the signal
𝑅′[𝑛] after the noise insertion becomes:

𝑅′[𝑛] = 𝑅[𝑛] +𝑊 𝑛
𝑆𝑁𝑅, 𝑛 = 1, 2, 3, ..., 𝑁. (1)

where 𝑊 𝑛
𝑆𝑁𝑅 denotes additive white Gaussian noise and 𝑁

denotes the number of samples which is selected based on
sampling rate.

The In-phase (𝐼[𝑛]) and Quadrature phase (𝑄[𝑛]) com-
ponents of each sample are also extracted in the pre-processing
phase. The values of 𝐼[𝑛] and 𝑄[𝑛] respectively, represent
the real and imaginary parts of each sample signal 𝑅′[𝑛].

Previous studies have shown that using IQ values as
an input of a technology recognition model leads to lower
classification accuracy for lower SNR values as compared to
using the FFT of the IQ values as an input [22, 26]. This hap-
pens due to the fact that FFT representation has frequency
domain features and are more distinguishable for low SNR
as compared to their IQ representation. This accuracy gain
is in fact obtained at the cost of additional complexity pre-
pended due to FFT computation. As we aim for ITS band
application, where safety-critical information is transmitted,
classification accuracy is of paramount importance. As a
result, the FFT of the collected IQ values is computed and
labeled in such a way that it will be used as an input, initially
for training of the neural network and later for real-time
identification and characterization of co-located wireless
technologies.

We compute 𝑀 point FFT computation of the 𝑀 IQ
samples collected in a TRW duration as follows:

𝑅
′′
[𝑘] =

𝑀
∑

𝑖=1
(𝐼[𝑖]+𝑗𝑄[𝑖])𝑊 (𝑖−1)(𝑘−1)

𝑀 , 𝑘 = 1, 2, ...,𝑀.

(2)
where 𝑊𝑀 = 𝑒(2𝜋𝑗)∕𝑀 and the value of M is selected based
on the sampling rate and time resolution used. In our technol-
ogy recognition model, a TRW of 44 𝜇s is selected based on
the shortest possible frame duration among the considered
technologies, as shown in Table 3. For the selected TRW of
44 𝜇s, the value of 𝑀 can be 44, 220, 440, 660, 880, and
1100 for a sampling rate of 1, 5, 10, 15, 20, and 25 Msps,
respectively.
4.3. CNN based Technology Recognition

After the captured samples are pre-processed, the FFT
of the IQ samples is used to train and validate a CNN based
technology recognition model. The structure of the CNN
model and the implementation details are described in the
next subsections.
4.3.1. CNN Structure

Figure 7 shows the CNN structure used in the proposed
technology recognition model. The datasets collected from
each technology are grouped on a resolution time window
basis and given as an input to the CNN model. As shown in
the figure, the input to the CNN model has a 2 X M dimen-
sion, where M indicates the number of samples captured in
the selected TRW. At a certain sampling rate, the 2 X M input
matrix (It) obtained by computing the real and imaginary
parts of the FFT of the IQ samples captured at the tth TRW.
The input matrix can be expressed as:

𝐼𝑡 =
[

𝑟𝑒𝑎𝑙(𝑅′′ [1]) 𝑟𝑒𝑎𝑙(𝑅′′ [2]) ... 𝑟𝑒𝑎𝑙(𝑅′′ [𝑀])
𝑖𝑚𝑎𝑔(𝑅′′ [1]) 𝑖𝑚𝑎𝑔(𝑅′′ [2]) ... 𝑖𝑚𝑎𝑔(𝑅′′ [𝑀])

]

.

(3)
where t is the TRW counter and 𝑅′′ [𝐾] is the FFT computed
for K= 1, 2, ..., M using eq. 2.
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Figure 7: Proposed CNN structure.

Three convolutional layers are used in the feature ex-
traction part of the network. The convolutional layers are
used to extract high-level features of each signal from the
input samples. The first convolutional layer, Convolutional
layer-1, is composed of 64 stacked filters with dimensions
of 1 x 3 that convolve with the input. As a result, 64 feature
maps with dimensions of 5 x (M+2) are created. Similarly,
Convolutional layer-2, the second convolutional layer, is
made up of 32 stacked 2 x 3 filters. These first and second
convolutional filters, in convolution with the layer’s input,
produce 32 feature maps with dimensions of 6 x (M+3),
where is M is number of IQ samples for a given sampling
rate. They both have zero padding of size 2 on their input.
Convolutional layer-3, is made up of 16 stacked 2 x 3 filters.
The filters are convolved with a stride of 1.

A ReLu activation function follows each convolutional
layer. As the parameters of the previous layers change,
the distribution of inputs for each layer can change during
training. To address this issue, a batch normalization [44]
is performed after each ReLu function. As a result, while
the training rate increases, the activations are properly ad-
justed and scaled. The first two convolutional layers employ
regularization with a dropout of 0.35 in conjunction with
the L2 kernel regularizer to reduce overfitting. For the third
convolutional layer, a dropout of 0.3 is used for the regular-
ization. The L2 regularizer is designed to penalize weights
of large magnitudes. Each convolutional layer is followed by
a pooling layer that performs Max Pooling.

The classification phase, which consists of two FC lay-
ers, comes after the feature extraction phase. The input to
the classification part is flattened first, and then FC layer-1
is added. This layer is made up of 100 neurons. It employs
the ReLu activation function, batch normalization, a 0.5
dropout, and an L2 kernel regularizer. This layer’s output is
fed into FC layer-2. FC layer-2 is a softmax classifier used
to estimate the probability of correctly classified inputs for
each class.

4.3.2. Training and Validation Process
From the collected dataset, 70% randomly selected sam-

ples are used for training, while the remaining 30% are
equally split for validation and testing of the model. The
random selection was made at a batch size of 256. To ensure
convergence, a default learning rate (𝛼) value of 0.001 was
used for the learning process. The number of training epochs
used was set at 2000, with a patience of 20 consecutive
epochs to stop the training process if the accuracy of the
CNN model stays unchanged without improvement. The
parameters of the CNN structure are estimated based on the
Adaptive moment estimation (Adam) optimizer [45]. Using
this approach, a total of six different CNN models have
been trained and validated for the different dataset clusters
collected using sampling rates of 1, 5, 10, 15, 20, and 25
Msps.
4.3.3. Implementation Details

The proposed CNN network used in this work was
trained and validated using the Keras software library [46].
Keras is a Python-based high-level API for neural networks.
This API can run on top of a variety of deep learning
frameworks, including TensorFlow [47], on top of a Central
Processing Unit (CPU), or Graphics Processing Unit (GPU).
The model training and validation was done in our in-
house built JupyterHub which provides access to high-end
GPUs [48].
4.4. Technology Characterization Process

In the previous section, we described the CNN model
that is used to identify a signal captured in a TRW of
44 𝜇s. However, the spectrum utilization and transmission
pattern of each technology can be estimated after sensing the
spectrum for a longer duration. After collecting a sufficient
set of statistics over a certain period of time, the traffic
characteristics of each technology can be estimated. In our
solution, we use 22,727 consecutive TRWs to characterize
the traffic and spectrum utilization of each technology. Con-
sidering the 44 𝜇s time resolution used in the technology
recognition models, the characterization duration occupied
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Table 4
Characterization parameters used for each technology.

Technology Characterization parameters

802.11n Traffic pattern, pps, COT
LTE Traffic pattern, COT
5G NR Traffic pattern, COT
C-V2X PC5 Traffic pattern, pps, COT
ITS-G5 Traffic pattern, pps, COT

by 22,727 TRWs equals to 0.999988 s. We refer to this period
of time as the characterization window and it was selected as
it is the closest possible window as compared to the typical
sensing window of Semi-Persistent Scheduling (SPS) in C-
V2X PC5, which is 1 s [49]. This sensing window of SPS
is used as a reference to select the characterization period
as the other considered vehicular technology (ITS-G5) has a
short clear channel assessment duration (42-131 𝜇s) which
is the arbitrary inter-frame space duration of the enhanced
distributed channel access mechanism used in its medium
access control protocol [50].

In each characterization window, different traffic charac-
teristic parameters are extracted based on the type of identi-
fied technologies. The characterization process starts by de-
termining the transmission pattern for each technology. The
continuous transmission duration of each identified tech-
nology is calculated by concatenating consecutive TRWs
identified as one technology. The traffic characterization pa-
rameters used for each considered technology are shown in
Table 4. For C-V2X PC5 and ITS-G5, the number of pps and
the duration of each identified frame are used to characterize
the traffic. With the knowledge of these parameters, a RAT
operating in the ITS band can avoid potential interference
with transmissions from the incumbent C-V2X PC5 and ITS-
G5 technologies. For Wi-Fi, the traffic characterization is
carried out by calculating the number of Wi-Fi frames and
the duration of each frame in the characterization window.
Similarly, transmission patterns are estimated to characterize
LTE and 5G NR traffic. For all the considered technologies,
the COT is computed using the aggregate frame duration
determined in the characterization window.

5. Experimentation Results
Based on the data collection procedure described in

subsection 4.1, 6 different dataset bunches are collected at
sampling rates of 1, 5, 10, 15, 20, and 25 Msps. The dataset
size at each considered sampling rate is 7500 X M, where M
can be 44, 220, 440, 660, 880, and 1100 for a sampling rate
of 1, 5, 10, 15, 20, and 25 Msps, respectively. Figure 8 shows
a spectrogram plot of sample signals used for the dataset of
each class at a 20 Msps sampling rate for a 1 s duration.
The figure shows the spectrogram of sample signals from
each considered technology and a sample noise signal from
the USRP used to capture the dataset of each technology.
Figure 8f shows the spectrogram of the noise on a USRP
N310 in a 20 MHz bandwidth at a center frequency of 5.9

(a) ITS-G5 (b) C-V2X PC5

(c) Wi-Fi (d) LTE

(e) 5G NR (f) Noise
Figure 8: Spectrogram plot of sample signals used for the
dataset of each class at a 20 Msps sampling rate for a 1 s
duration.

GHz. Any non-zero value over the whole bandwidth shows
the level of the noise signal, while the sharp values at the
center frequency show the DC component of the noise signal
from the USRP. In the next section, the obtained results are
presented in terms of a) technology recognition performance
and b) traffic characterization performance.
5.1. Technology Recognition Performance

In this section, the performance of the CNN-based
technology recognition model is presented in terms of
model training/validation loss, classification performance,
and model complexity. The performance of the proposed
technology recognition solution is also compared with other
existing technology recognition schemes.
5.1.1. Model Loss

Figure 9 shows the training and validation loss curves of
the proposed CNN model. The validation and training loss
curves are obtained in a complete CNN training process by
testing the performance of the model on the 30% of the total
dataset samples that are used to validate the CNN model.
These validation and training loss curves are specifically for
a 20 Msps sampling rate and a 44 𝜇s. Similar loss curves
were observed for the other sampling rates and TRWs used
in the performance analysis. The loss curves show that there
is no overfitting in the training and validation processes, and
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we used an early stopping criterion in model training, which
is used for better generalization performance.
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Figure 9: Training and validation loss.

5.1.2. Classification Performance
Once the technology recognition model is trained and

validated, the classification performance of the proposed
technology recognition model is computed to evaluate the
performance of the CNN model as it identifies the captured
samples from the considered wireless technologies. The
classification performance is presented in terms of precision,
recall, F1-score, and accuracy metrics.

To assess the model’s effectiveness in different SNR
conditions, various levels of noise ranging from -15 to 30
dB are introduced. Figure 10 shows the confusion matrix of
the proposed technology recognition models with different
sampling rates at 0 dB SNR. Each column in this figure rep-
resents the true label, and each row represents the predicted
labels. The confusion matrix in Figure 10 shows the true
positive (𝜗), false positive (𝛿), and false negative (𝜉) values
of each class at 0 dB SNR and 44 𝜇𝑠 TRW. This is used
to compute the precision (Π) , recall (Ω), and F1-score (Ψ)
metrics using:

Π = 𝜗
𝜗 + 𝛿

, Ω = 𝜗
𝜗 + 𝜉

, Ψ = 2 × Π × Ω
Π + Ω

. (4)

The precision metric quantifies the proportion of positive
outcomes that are actually positive, whereas the recall metric
indicates the proportion of true positives that are accurately
identified as positive. The F1-score measures the overall
accuracy of a classifier model as it is the harmonic mean
of precision and recall. The results in Table 5 show that the
precision, recall, and F1-score of the proposed CNN models
increase as the sampling rate used increases.

Figure 11 shows the accuracy of the proposed tech-
nology recognition model at different sampling rates. The
classification accuracy results are obtained by assessing the
model’s performance on the 30% of the total dataset samples
that are used to validate and test the CNN model. The
figure shows the classification accuracy of the technology
recognition models at different sampling rates as the SNR of

Table 5
Precision, Recall, and F1-Score of the proposed technology
recognition model for different sampling rates.

Sampling Rate Class Precision Recall F1-Score

C-V2X PC5 0.37 0.43 0.39
ITS-G5 0.69 0.62 0.65

1 Msps LTE 0.74 0.70 0.72
5G-NR 0.51 0.54 0.53
WiFi 0.73 0.61 0.67
Noise 0.51 0.62 0.56

C-V2X PC5 0.88 0.93 0.90
ITS-G5 0.89 0.87 0.88

5 Msps LTE 0.87 0.84 0.86
5G-NR 0.86 0.92 0.89
WiFi 0.81 0.90 0.86
Noise 0.90 0.76 0.82

C-V2X PC5 0.89 0.96 0.92
ITS-G5 0.90 0.83 0.86

10 Msps LTE 0.88 0.85 0.86
5G-NR 0.86 0.95 0.90
WiFi 0.80 0.93 0.86
Noise 0.91 0.77 0.83

C-V2X PC5 0.80 0.90 0.85
ITS-G5 0.92 0.91 0.91

15 Msps LTE 0.98 0.98 0.98
5G-NR 0.91 0.84 0.87
WiFi 0.93 0.91 0.92
Noise 0.91 0.91 0.91

C-V2X PC5 0.97 1.00 0.98
ITS-G5 0.99 0.97 0.98

20 Msps LTE 0.99 0.97 0.98
5G-NR 1.00 0.99 0.99
WiFi 0.93 0.98 0.96
Noise 0.96 0.95 0.95

C-V2X PC5 1.00 1.00 1.00
ITS-G5 0.99 1.00 0.99

25 Msps LTE 0.97 0.96 0.96
5G-NR 0.96 0.97 0.97
WiFi 0.97 0.99 0.98
Noise 0.95 0.91 0.93

the received signal varies from -15 to 30 dB. For higher SNR,
the signal is less distorted and high above the noise floor, and
the features of each signal are still representative enough to
be well classified by CNN. However, with lower SNR, the
signal may be corrupted, and some unique features may be
distorted, which results in wrong classification by the CNN.
The Figure illustrates that the CNN model’s classification
accuracy increases when a higher sampling rate is used.
The number of IQ samples captured in each TRW increases
as the sampling rate increases. As an example, for a fixed
44 𝜇𝑠 TRW, each signal sample will be represented by
220 and 880 IQ samples for a sampling rate of 5 and 20
Msps, respectively. With a higher number of IQ samples
in each TRW, the unique features of each technology are
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Figure 10: Confusion matrices for CNN models using different sampling rates at 0 dB SNR.

more representable, which is then used by the CNN for ex-
tracting good features. Therefore, the classification accuracy
increases as the sampling rate increases. For an SNR of 0
dB, we can clearly observe that setting the sampling rate
to 15 Msps or higher leads to a classification accuracy of
more than 90%. More precisely, using the CNN model that
uses the highest considered sampling rate (25 Msps) offers
an excellent accuracy of 97.5% as compared to the lower
classification accuracy of 48.5% for the CNN model that
employs the lowest considered sampling rate (1 Msps).

Figure 11: Classification accuracy in relation to SNR for the
proposed technology recognition model using 44 𝜇s TRW and
different sampling rates.

For SNR values higher than 5 dB, the classification
accuracy can reach up to 73.2% when the CNN model trained
and validated with 1 Msps sampling rate. For the rest of the
CNN models, the classification accuracy obtained is higher
than 98%. However, the classification accuracy of the CNN
model with 1 Msps sampling rate drops to 28% if the SNR
of the received signal drops to -5 dB, while a classification
accuracy of 86% is achieved with the CNN model that
employs a 20 Msps sampling rate. For SNR values higher
than 10 dB, an excellent classification accuracy (higher than
90%) is achieved with a lower sampling rate of 5 Msps.
5.1.3. Model Complexity

The complexity analysis of the proposed technology
recognition models in terms of model parameters is pre-
sented in Table 6. The table shows the input dimensions
and model parameters used for the CNN models trained
and validated with different sampling rates and TRWs. To
illustrate the complexity/accuracy trade-off, the table also
presents the classification accuracy of each CNN model at
0 and 10 dB SNR.

For the proposed 44 𝜇s TRW, it can be observed that
the lower sampling rate (5 Msps) based CNN model can
be used to develop a less complex CNN model which can
effectively distinguish the signal. Hence, for average to high
SNR values, lower sampling rates can be used to accurately
classify the signal with lower complexity compared to the
CNN models that use the higher sampling rates. However,
bad channel conditions with an SNR lower than 0 dB require
the more complex, high sampling rate-based CNN models to
achieve excellent classification accuracy.
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Table 6
Complexity vs accuracy analysis in terms of input, model
parameters, and accuracy: i) using different sampling rates
with proposed TRW (44 𝜇s) ii) using different TRWs with
fixed sampling rate (20 Msps).

Varying sampling rate with proposed TRW (44 𝜇𝑠)
Sampling Input Model Accuracy Accuracy

rate dimension parameters at 0 dB at 10 dB

1 Msps 2 X 44 53,696 48.52% 71.26%
5 Msps 2 X 220 159,296 86.14% 98.12%
10 Msps 2 X 440 293,696 86.67% 98.24%
15 Msps 2 X 660 423,296 92.43% 98.67%
20 Msps 2 X 880 557,696 97.48% 99.26%
25 Msps 2 X 1,100 687,296 98.21% 99.67%

Different TRWs with fixed sampling rate (20 Msps)

Input Model Accuracy Accuracy
TRW dimension parameters at 0 dB at 10 dB

44 𝜇𝑠 2 X 880 557,696 97.48% 99.26%
68 𝜇𝑠 2 X 1,635 845,696 97.44% 99.34%
100 𝜇𝑠 2 X 2,000 1,229,696 98.34% 99.46%
244 𝜇𝑠 2 X 4,880 2,957,696 98.21% 99.51%

Additionally, Table 6 shows the accuracy/complexity
trade-off for 68 𝜇s, 100 𝜇s, and 244 𝜇s TRWs, which are
adopted from [25], [26], and [28], respectively. The results
are compared with the proposed 44 𝜇s TRW based model.
Increasing the TRW (for a fixed sampling rate) leads to a
higher number of IQ samples captured in each sample signal.
For a fixed 20 Msps sampling rate, 220 and 4,880 IQ samples
will be captured in TRW of 44 and 244 𝜇𝑠, respectively.
With a higher number of IQ samples in each TRW, the
unique features of each technology are more representable,
which is then used by the CNN for extracting good features
automatically. This results in increasing the classification
accuracy. The results show that using a longer TRW leads
to a marginally better accuracy at a cost of increased com-
plexity. If a longer TRW is employed, more features will be
included in each TRW, resulting in enhanced accuracy, as
long as only one technology transmits its traffic within the
TRW. In practice, different technologies can transmit their
traffic within a short window, and this makes using longer
TRWs impractical.

Generally, CNN models have a significantly high arith-
metic intensity, resulting in increased inference time, energy
consumption, and memory bandwidth. This may create addi-
tional processing overhead for real-time systems employing
models running on the edge and embedded devices. Model
quantization can be used to reduce the complexity of the
proposed CNN models so that they can execute on embedded
and edge devices. Model quantization is an approach used
to reduce latency, memory requirements, and energy per
inference with minimal accuracy changes [51].

5.1.4. Comparison with Existing Technology
Recognition Schemes

Figure 12 shows the comparison of classification accu-
racy between i) RFC based on manual feature extraction
from RSSI histogram [22] , ii) CNN based on IQ samples
[25], and iii) the proposed CNN model that uses FFT of IQ
samples as input. The comparison is made for a 20 Msps
sampling rate and a 44 𝜇𝑠 TRW. For higher SNR channels,
the RFC that uses RSSI histogram-based manual feature
extraction has a good classification accuracy (>80%). But
this RFC-based TR has generally lower accuracy as com-
pared to the proposed CNN-based technology recognition.
The accuracy gain in the proposed CNN-based technology
recognition is obtained at the cost of additional complexity
for the automated feature extraction of the neural network.

Figure 12: Comparison of Classification accuracy at 44 𝜇s
TRW and 20 Msps sampling rate for i) RFC based on manual
feature extraction from RSSI histogram [22] , ii) CNN based
on IQ samples [25], iii) CNN based on FFT of IQ samples
(proposed model).

On the other hand, the IQ sample-based CNN has ex-
cellent classification accuracy, reaching up to 99% for the
higher SNR channel. However, using IQ values as an input of
a technology recognition model leads to lower classification
accuracy for lower SNR values as compared to the pro-
posed mode. This happens due to the fact that the proposed
model uses the FFT of the IQ values as an input. The FFT
representation has frequency domain features that are less
corrupted by noise as compared to the corresponding IQ
representation. This accuracy gain is also achieved at the
cost of additional computational complexity for the FFT
computation. In general, it can be seen that the proposed
approach offers greater accuracy at the expense of increased
complexity. However, classification accuracy is crucial as we
aim for technologies in the ITS band in which safety-critical
information is transmitted. Thus, the proposed solution be-
comes a more feasible approach.
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Table 7
Traffic characterization performance comparison in terms of the estimated number of frames (Nf), estimated COT, and
transmission pattern characterization accuracy for technology recognition models using 44 𝜇s (proposed), 68 𝜇s [25], 100
𝜇s [26], and 244 𝜇s [28] TRWs for 20 Msps sampling rate and 0 dB SNR channel.

Characterized Characterized TPacc (%)
Actual Nf at TRW(𝜇𝑠) Actual COT(%) at TRW(𝜇𝑠) at TRW(𝜇𝑠)

Technology Nf 44 68 100 244 COT(%) 44 68 100 244 44 68 100 244

ITS-G5 250 250 250 250 250 0.75 0.75 0.78 0.83 0.95 97.54 91.03 87.23 84.2
C-V2X PC5 500 500 500 500 500 1.49 1.50 1.54 1.63 1.71 96.25 93.41 86.11 79.34
Wi-Fi 500 505 494 482 468 0.26 0.26 0.34 0.45 0.52 - - - -
LTE - - - - - 15.97 15.98 16.80 21.03 22.12 - - - -
5G NR - - - - - 10.03 10.04 11.32 12.89 14.78 - - - -

5.2. Traffic Characterization Performance
The characterization process starts with the determina-

tion of the transmission pattern of each identified signal.
The transmission pattern of an identified signal represents
the TON and TOFF duration statistics within each character-
ization window. The TON indicates the time duration where
an identified technology occupies the channel continuously,
whereas and TOFF represents the silent duration in between
the transmissions. For ITS-G5 and C-V2X PC5 technolo-
gies, the minimum possible frame duration (minimum pos-
sible TON) is greater than two consecutive TRWs (Table
3). Hence, a resolution window identified as a different
technology in between two resolution windows identified as
ITS-G5 or C-V2X PC5 is changed to match the bounding
resolution windows. This process was introduced to reduce
the effect of miss-classification on the frame characterization
process for the high-priority safety-critical ITS-G5 and C-
V2X PC5 technologies. Figure 13a shows an example of the
transmission pattern of an actual received signal from the
ITS-G5 transmitter with 50 pps for a 0.15 s duration. On
the other hand, Figure 13c shows the characterized ITS-G5
transmission pattern using technology recognition.

The TON duration of each identified technology is cal-
culated by concatenating consecutive TRWs identified as
one technology. Based on these statistics, the number of
frames is also calculated for Wi-Fi, ITS-G5 and C-V2X
PC5 technologies. For the incumbent ITS-G5 and C-V2X
PC5 technologies, the correct transmission pattern charac-
terization probability TPacc for each technology is calculated
using:

𝑇𝑃𝑎𝑐𝑐 = 1 − 1
𝑁𝑓

𝑁𝑓
∑

𝑘=1

[

|𝑡𝑠𝑡𝑎𝑟𝑡[𝑘] − 𝑡∗𝑠𝑡𝑎𝑟𝑡[𝑘]|
𝑡𝑠𝑡𝑎𝑟𝑡[𝑘]

+
|𝑡𝑠𝑡𝑜𝑝[𝑘] − 𝑡∗𝑠𝑡𝑜𝑝[𝑘]|

𝑡𝑠𝑡𝑜𝑝[𝑘]

]

.

(5)

where Nf is the number of frames (for Wi-Fi, ITSG-5,
and C-V2X PC5) and number of continuous transmission
spells (for LTE and 5G NR), which is determined from the
statistics of consecutive TRWs identified as one technology
in the characterization window. As shown in Figure 13, tstart

(a)

Sample captured signal

Technology recognition outcome: 

Class 0 = Noise


  Class 1 = ITS-G5

ITS-G5 NoiseNoise

  7 X 44 µs Noise -->17 X 44 µs ITS-G5 --> 8 X 44 µs Noise  

Characterization outcome

Technology
Recognition

IQ Sample
Extraction / FFT

C
haracterization

(b)

(c)
Figure 13: a) Actual transmitted IVI frames from ITS-G5
transmitter (with 50 pps transmission) in 0.15 s duration
b) characterization process c) corresponding Transmission
Pattern (TP) characterized using the proposed technology
recognition and characterization solution.
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and tstop represent the actual starting and stopping points
of an active transmission interval by a certain technology.
Similarly, t*start and t*stop represent the starting and stopping
points of an active transmission interval identified and char-
acterized as one technology. An active transmission interval
identified as one technology is composed of consecutive
TRWs classified into one class of technology. For each
active transmission interval identified as one technology, the
starting point of the first TRW is t*start, while the ending
point of last the TRW is t*stop. Figure 13b shows the char-
acterization process for a sample captured signal in a certain
time window. Consecutive TRWs identified as class 0 and
class 1 are used to determine the time windows used by noise
and ITS-G5 signal, respectively.

The accuracy of the number of frames determined by the
characterization process was also determined using the ratio
of the number of actually transmitted frames and the number
of frames estimated in the characterization process. Simi-
larly, the accuracy of number of TRWs and COT determined
from the characterized signal was calculated by taking the
actual transmitted number of TRWs and COT of the trans-
mitted signal as a reference. The COT of each characterized
technology is computed by using the cumulative sum of TONof each identified frame over a characterization time period.

For characterization accuracy evaluation, we used con-
trolled medium access for each considered technology, so
that we have a useful base reference to compute the ac-
curacy of the characterization process. Table 7 shows the
characterization performance of the proposed model for a
signal received for 25 s, where C-V2X PC5, ITS-G5, Wi-Fi,
LTE, and 5G NR occupy 5 s each. For validation purposes,
transmissions from only one technology are received every
5 s. This enables us to label the signal received every
5 s and use it for characterization accuracy computation.
The characterization performance is presented in terms of
resolution window, COT, transmission pattern accuracy, and
the number of frames determined.

The results illustrated in Table 7 are obtained using a
20 Msps sampling rate based CNN model for technology
recognition. In the characterization process, a 0 dB SNR
channel is considered where each technology exclusively
uses the medium for 5 s. The traffic used in each 5 s is
generated from the five considered technologies as follows:
i) ITS-G5 transmitter with 50 pps IVI message traffic with a
20 ms inter packet interval (with no packet re-transmission),
ii) C-V2X PC5 transmitter with 50 pps IVI message traf-
fic with a 20 ms inter packet interval (with 1 packet re-
transmission), iii) Wi-Fi transmitter with 100 pps traffic and
500 byte packet size, iv) 10 Mbps traffic load on LTE user
(with 2 blank sub-frames in each frame), and v) 5 Mbps
traffic load on 5G NR user. The results depicted in Table
7 show that the proposed technology recognition model can
be used to accurately characterize the traffic characteristics
of each considered technology.

The results in the table also show that the proposed
TRW (44 𝜇s) leads to a higher characterization accuracy as
compared to the longer TRWs adopted from [25], [26], and

[28]. As an example, it can be observed that the proposed
model characterizes the ITS-G5 signal with slightly shifted
starting and stopping time of the frames (TPacc of 97.54%)
while the number of frames and COT are accurately charac-
terized. The slight characterization errors on the starting and
stopping points of each frame lead to a drop in the TPacc but
this doesn’t directly affect the frame count and COT. This
improvement in characterization accuracy is the result of
using shorter TRW, which reduces the likelihood of mixing
up multiple frames from different technologies in a single
label.

Generally, it can be observed that the proposed tech-
nology recognition model followed by the traffic charac-
terization process can be used to accurately classify and
characterize the traffic from each technology. The estimated
traffic characteristics can be used to develop spectrum shar-
ing schemes aiming to protect the incumbent ITS-G5 and
C-V2X PC5 transmissions.

6. Conclusion and Future Works
The expansion of wireless mobile network deployments,

along with the rapid penetration of the Internet of Things,
has resulted in an exponential increase in wireless traffic
demand. As a solution to meet the rising traffic demand,
spectrum sharing approaches are proposed to be used in
current and next-generation wireless communication sys-
tems. Spectrum management is anticipated to become more
flexible and dynamic in the future, potentially allowing all
radio access technologies to share a large portion of the
spectrum. In this direction, it will be necessary to make in-
telligent spectrum decisions, which will be aided by wireless
technology recognition, allowing networks to dynamically
adapt to an environment in which fair coexistence with other
wireless technologies is becoming increasingly important.
In this direction, this work has proposed a CNN-based tech-
nology recognition and characterization model for enabling
spectrum sharing in the ITS band. We have presented a CNN
model-based technology identification and traffic character-
ization solution for ITS-G5, C-V2X PC5, Wi-Fi, LTE, and
5G NR technologies. As compared to current state-of-the-
art solutions, a short time resolution window of 44 𝜇s is
selected for the technology recognition model. The TRW is
selected based on the shortest possible frame duration in the
considered technologies. The complexity/accuracy trade-off
has been illustrated by collecting six dataset clusters with
sampling rates of 1, 5, 10, 15, 20, and 25 Msps. To evaluate
the technology recognition model’s performance on various
channels, the collected IQ samples are pre-processed by
adding noise of various SNR values. Then, the FFT of
the IQ samples is used as an input to train and validate
the technology recognition model. Furthermore, a traffic
characterization method has been proposed to estimate the
characteristics of the traffic identified by the technology
recognition process.
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The classification accuracy of the technology recog-
nition model is determined using the correct classifica-
tion probability, and the technology characterization perfor-
mance is determined in terms of COT, transmission pattern
characterization accuracy, and accuracy of the estimated
number of frames. For SNR values of 5 dB or higher, we ob-
served that a comparatively less complex CNN model with
lower sampling rates (5 Msps) can effectively distinguish
the signal type, exceeding a classification accuracy of 96%.
However, low SNR channels require more complex, high
sampling rate (20 Msps) based CNN models to achieve high
classification accuracy.

In the near future, this work will be validated by im-
plementing the technology recognition and characterization
process on edge and embedded devices. Adaptive model
quantization will be used to reduce latency, memory require-
ments, and energy consumption per inference time with min-
imal changes in accuracy. This model complexity minimiza-
tion is required to enable a near real-time execution of the
technology recognition and characterization process on edge
and embedded devices. Moreover, the traffic characteristics
estimated in our solution can be utilized to develop efficient
spectrum-sharing schemes in the ITS band.
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